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ABSTRACT
We present a large-scale study demonstrating how machine
learning models trained on student data can perpetuate and—
at worst—amplify racial discrimination and bias patterns
that have existed in the American education system. We
base our study on two datasets of middle and high school
students collected in the United States. We find that stan-
dard machine learning models used to predict student math
performance consistently give more benefit of the doubt to
White and Asian students and are more pessimistic in their
predictions to Black, Hispanic, and Native American stu-
dents. Even more dangerously, these disparities are hid-
den by high accuracy numbers—the standard figure-of-merit
used to evaluate machine learning performance. We also
study the fairness implications of the racial composition of
datasets used to train machine learning models that pre-
dict student performance. Our results show that changing
the racial composition of the training dataset produces a
surprising trade-off between false-positive and false-negative
predictions between student groups. We discuss how we can
leverage this effect as a tool for reducing racial gaps in pre-
diction error patterns while preserving accuracy. We also
benchmark several state-of-the-art fairness interventions on
student data and report their performance. Our analyses
provide guidelines for creating more racially just machine
learning models in education.
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1. INTRODUCTION
Machine learning (ML) algorithms are routinely used to sup-
port decisions that impact millions of students and their edu-

∗This work was also presented at the NeurIPS 2021
MathAI4Ed Workshop.

cational opportunities. In recent years, ML has been rapidly
adopted in areas such as grading [25, 36], personalized learn-
ing [36, 48], and school admissions [36, 51]. One of the
highest profile applications of algorithmic decision-making
to education occurred in 2020 when the UK used a data-
driven algorithm to assign 4.6 million grades for the A-level
examinations due to Covid-19 restrictions on in-person test
taking. This algorithm was found to systematically assign
higher grades to students from historically high-performing
schools in wealthier regions regardless of students’ objective
performance and sparked nationwide protests [1, 47].

ML algorithms are prone to discrimination in domains where
racial inequalities are already pervasive. Data-driven algo-
rithms can inherit and exacerbate human biases in applica-
tions such as criminal justice [6, 7], child welfare [8], and
hiring [35], resulting in unfair decisions for historically un-
derprivileged groups. In K-12 education—and STEM sub-
jects in particular—racial disparities are widespread, with
inequities existing in school funding, access to advanced
placement classes, teacher perception, among many other
areas [40, 41, 20]. The persistent racial disparities that exist
in K-12 schools create a high-stakes minefield for ML algo-
rithms. Nevertheless, the use of ML in education-related
applications continues to increase at an unrestrained pace,
with little to no guidelines and best practices to ensure that
deployed algorithms are fair to students from diverse back-
grounds.

In this work, we demonstrate concrete examples of how
racial inequities emerge when ML algorithms are used to
predict students’ future math performance in secondary ed-
ucation. Our analysis is based on training popular ML mod-
els on large-scale datasets collected from middle schools and
high schools across the United States. We find that the
standard pipeline for training and deploying ML models—
collecting a representative dataset, then fitting a ML model
to maximize predictive accuracy—can systematically fail Black,
Hispanic, and Native-American (BHN) students compared
to White and Asian (WA) students when applied to pre-
dict future math performance.1 Accuracy measures the rate
of misclassification, but not all errors committed by a ML
model are equal. False-positives give the benefit of the doubt
to students and provide more opportunities, whereas false-

1We categorize student race in to WA and BHN as White
and Asian students are well-represented demographic groups
in STEM education in the US [18].



Figure 1: A confusion matrix for binary classification problems with

the different errors that a ML model can make when predicting stu-

dent performance (top or bottom 50% of their class). False positives

in the blue bottom left box result in“benefit of the doubt”to students,

providing more educational opportunities, and false negatives in the

red top right box result in “pessimistic underestimations” which can

undercut students’ educational opportunities.

negatives undercut students’ future potential (see Fig. 1).
Our experiments show that standard ML algorithms achieve
comparably high accuracy for both WA and BHN students
when predicting future math performance, but the patterns
of misclassifcation can be strikingly different between these
two groups: WA students receive substantially more benefit
of the doubt while BHN students receive more pessimistic
predictions. The harm is silent: the usual procedure of opti-
mizing ML models for accuracy may mask predictions that
deprive BHN students of educational opportunities. Our
findings suggest that, when predicting student future per-
formance, false-positive rates and false-negative rates across
student populations must be closely monitored.

We explore the impact of changing the racial composition of
the training set and observe an intriguing trade-off between
false positive rate (FPR) and false negative rate (FNR) as
we vary the ratio of WA and BHN students. We show that
by varying mixtures of BHN and WA students in the train-
ing set, the gap between error rates can be reduced with
minimal impact on the model’s overall accuracy. This result
indicates that selecting the fairest demographic composition
is not always straightforward. In fact, we show that the
most counter-intuitive choice of using a homogeneous train-
ing set comprised only of one group can result in a model
with the smallest disparity between the groups. Moreover,
we report the performance of several fairness interventions.
We observe that there is no clear winner among the five
methods we tested. While state-of-the-art methods that do
not utilize race as a feature can reduce FPR and FNR gaps
substantially with a small sacrifice in accuracy, they cannot
close the gaps completely. Only the methods that require
student race information for the prediction can bring FPR
and FNR differences close to zero.

Together, our findings are of direct value to data scien-
tists, school administrators, and teachers who are consid-
ering using ML to support pedagogical decisions. The re-
sults presented next suggest three critical best practices: 1)
monitor differences between false-positive and false-negative
rates across student groups to ensure that all students re-
ceive comparable benefit of the doubt regardless of their

racial background, and 2) judiciously vary the racial com-
position of training sets in order to close the gap between
false-positive and false-negative rates, 3) apply different fair-
ness interventions to further close this gap at a potential
accuracy cost.

The main contributions of this paper are:

• We demonstrate that ML models that predict student
performance can perpetuate biases that exist in the
American education system. To the best of our knowl-
edge, our results represent the first comprehensive and
real-world study on the discrimination risks of deploy-
ing ML in education.

• Drawing from the literature on social psychology, we
show how gaps in ML performance across different stu-
dent populations may have detrimental downstream
effects on educational opportunities. Specifically, we
identify the benefit of the doubt, given be difference in
false positive rates across student groups, as a mean-
ingful metric for evaluating the disparity in ML per-
formance in education.

• We show that the racial composition of the training
dataset can impact ML bias and suggest best practices
for data collection and balancing of student data.

• We benchmark several fairness interventions on real-
world education data. Our results indicate that there
is no single “best” fairness intervention. Depending
on ethical constraints (e.g., if one can use sensitive
attributes, how much accuracy one can sacrifice), a
model developer should explore different options.

• Our findings expose several challenges for the respon-
sible deployment of ML in education and serve as a
guideline for data scientists working with student data.

2. RELATED WORK
Racial biases induced by machine learning systems have
been reported in a number of areas including recidivism
prediction [3], hiring [35, 53], child welfare [8], opioid use
disorder detection [28], healthcare [37], and speech recogni-
tion [30]. For quantifying the discrimination of ML algo-
rithms, various metrics were proposed. The ones that are
most relevant to our work are equalized odds [21], disparate
mistreatment [56], and error rate balance [7]. They examine
the difference in FPR and FNR between majority and mi-
nority groups (e.g., male vs. female), and deem the model
fair if FPR and FNR are equal in both groups. Many re-
search works proposed a fair learning method that aims to
achieve equalized odds [21, 56, 2, 5, 9, 52], and state-of-
the-art methods were shown to reduce FPR and FNR sub-
stantially with a small loss in accuracy when evaluated on
widely used datasets (e.g., COMPAS or Adult). We apply
some of these methods to the education data and compare
their performance in Section 5.

As the application of ML is explored in various areas of ed-
ucation (e.g., high school dropout prevention [11], MOOC
dropout prediction [17], college admission [51]), several re-
cent works study potential bias issues of ML applied to



Schools # Students Features Label

MSS 10 private middle schools ∼ 3,000 Student/parent surveys, student demographic
information, students’ past academic performance

9-th grade
math scoreHSLS 940 public high schools ∼ 20,000

Table 1: Summary of the datasets used in the paper.

education. In [46, 22, 54], the authors consider training
a ML model for detecting at-risk students at college (low-
performing or early dropouts) and examine the fairness of
the model across different subpopulations (e.g., gender or
race). Predicting student success and future grades at col-
lege is studied in [55, 23]. For online learning systems, fair-
ness in knowledge tracing [13] and MOOC dropout detec-
tion [19] have been studied.

This paper examines ML fairness applied in secondary ed-
ucation. We especially focus on math education in middle
and high schools because decisions made at this period are
critical to students’ future STEM education and career due
to the cumulative nature of math. Our study also relates to
a realistic scenario where an algorithm is used for tracking
and class placements as math is the most tracked class in
the US [4]. A similar line of work includes [38, ?]. Further-
more, the data we examine are distinct from previous works
as it not only contains students’ past performance and de-
mographic information but also contains extensive survey
answers from students and parents, including questions re-
garding their stereotypes toward STEM subjects. Further-
more, this is the first work that provides a comprehensive
empirical analysis on applying state-of-the-art fair learning
methods on education data.

Finally, we want to note that the balancing approach we
discuss in Section 4 is conceptually related to resampling
or reweighting techniques for achieving fairness when there
exists class or label imbalance [26, 44, 31].

3. UNEQUAL BENEFIT OF THE DOUBT
We describe next the discrimination patterns that emerge
when ML models used for predicting student math perfor-
mance. We also discuss the implications of this bias in terms
of limiting educational opportunities for BHN students. In
the subsequent sections, we explore how this observed bias
can be mitigated by changing the composition of the train-
ing set, as well as by applying existing fairness interventions.
In all analyses we present in the paper, we use two datasets:
the middle school study (MSS) dataset [10] and the public-
use high school longitudinal study 2009 (HSLS) dataset [43].
The MSS dataset is contains roughly 3,000 entries collected
from ten private middle schools (5 coeducational and 5 all-
girl schools) in the US. The publicly available HSLS dataset
is collected from 20,000+ students from 940 public and pri-
vate high schools in the US across 50 different states and
District of Columbia. Both datasets include student sur-
veys, student demographic information, parent surveys, and
students’ math performance across several years.

Math is a foundational subject in STEM education. Accu-
rate predictions of students’ future math performance can
enable better educational resource distribution to boost stu-
dents with potential (e.g., advanced class placements or gifted

program recommendations). We train several ML models
(logistic regression, SVM, random forests, see Materials and
Methods section for details) to predict if a student will be
a top 50% performer in their future math class (positive
prediction) or bottom 50% performer (negative prediction).
Students’ past performance is not enough to predict future
success and persistence. In fact, with the HSLS dataset,
we observe that prediction accuracy is 68.2 ± 0.1 % if we
make predictions about students’ math performance in the
9th grade based only on their past performance. Accuracy
improves to 75.0 ± 0.1 %, by utilizing more features in the
data such as student and parent’s survey answers.

Being able to take advantage of more data for more accu-
rate predictions with ML sounds promising. However, the
deployment of ML may not benefit all racial groups equally.
The models we trained achieve comparable accuracy across
WA and BHN students in predicting future math perfor-
mance. However, when examining metrics beyond accuracy,
significant racial inequalities emerge. Even though a simi-
lar average accuracy indicates that there are roughly equal
numbers of misclassified points among WA and BHN stu-
dents, how they are misclassified is staggeringly different.

For each model, we examine four different metrics: accu-
racy, false positive rate (FPR), false negative rate (FNR),
and predicted base rate (PBR). These metrics can be un-
derstood using a confusion matrix described in Fig. 1. False
positive prediction refers to students who did not belong in
the top 50% of math performers based on their actual grades
but received a positive prediction from the ML model. In
other words, they are given the benefit of the doubt from the
ML prediction. On the flip side, false negative predictions
are students who did belong in the top 50% in reality, but
are given a negative prediction. This is a pessimistic under-
estimation of their future performance. By examining FPR
and FNR, we discover that WA students are consistently
given more benefit of the doubt, while BHN students are
consistently underestimated in predicting their future per-
formance despite similar accuracy numbers for both groups.
This shows that narrowly focusing on accuracy can give an
illusion of fairness when there is significant discriminatory
impact on minority students.

Middle school dataset results.. We performed binary clas-
sification on whether a student will be a top 50% performer
in their 9th grade math courses or a bottom 50% performer.
We removed all features related to students’ race such as
their parents’ place of birth. Since the MSS dataset is col-
lected only from private schools, it has a relatively small
number of BHN students—they make up only 26% of the
data. We undersampled WA students to generate a balanced
dataset with a roughly equal number of WA and BHN stu-
dents. As different subsamples chosen from WA students in



WA BHN Difference

MSS

Size 128 132 –

PBR 0.575 0.488 0.087 (+15.13%)

FPR 0.319 0.281 0.038 (+11.91%)

FNR 0.205 0.276 -0.071 (-34.63%)

Accuracy 0.740 0.721 0.019 (+2.57%)

HSLS

Size 2867 1486 –

PBR 0.580 0.347 0.233 (+40.17%)

FPR 0.304 0.176 0.128 (+42.11%)

FNR 0.209 0.371 -0.162 (-77.51%)

Accuracy 0.750 0.750 0.000 (+0.00%)

Table 2: Random forest results for math performance predictions

on the Middle School Study dataset (MSS) and the High School Lon-

gitudinal Survey (HSLS) dataset. Size represents the number of

samples in the test set. In both datasets, PBR and FPR are

higher for WA students and FNR is higher in BHN students,

while accuracy is similar between the groups. The higher FPR in

WA students suggests that they are getting more “benefit of the

doubt” predictions and the higher FNR in BHN students shows

that they are receiving more “pessimistic underestimation” pre-

dictions.

the training set can lead to different models, we ran multiple
iterations of data balancing and averaged their performance.
We split the balanced dataset into a training set (70%) and
a test set (30%). We ran 30 runs of data balancing, and with
each balanced dataset, we ran 30 different train/test splits.
In total, we get results from 900 models and compute the
average and standard error by aggregating the performance
metrics of each model. The result of training a random for-
est model is summarized in Table 2.

First, notice that the difference in accuracy between WA and
BHN is small (< 3% relative difference). However, FNR was
considerably smaller for WA students compared to BHN.
The relative difference in FNR was up to 35%. At the same
time, FPR is 12% higher for WA students. In other words,
WA students are less prone to get an underestimated predic-
tion and more likely to receive the benefit of the doubt from
the trained ML model. We also observe that PBR is higher
in WA students than in BHN students. This may reflect the
difference in the ground truth data. The observed base rate
was 0.52 for WA and 0.46 for BHN students. However, the
PBR difference from the trained random forest models was
about 0.09, indicating that the existing racial performance
gap is exaggerated in the ML model’s predictions.

High school dataset results.. We ran a similar experiment
on the public-use HSLS dataset to replicate our findings on
the MSS dataset. We again trained binary classification
models to predict top and bottom 50% performers in the
standardized test taken in the 9th grade. We train differ-
ent models with 30 different train/test splits and obtain the
average and standard error. We did not perform data bal-
ancing for the HSLS dataset since it was collected from both
public and private schools from all states (the MSS dataset
was collected only from private schools, from a few states)
and its racial representation is close to national statistics.
The results are summarized in Table 2.

We identify a very similar pattern of bias in the HSLS dataset.
There is a negligible difference in accuracy between the racial
groups. However, the difference in FPR and FNR is sub-
stantial. FPR is 42% higher for WA than BHN students in
all models, and FNR is 78% lower for WA than BHN stu-
dents. The gaps in FNR and FPR are even wider than the
MSS dataset analysis. This may be due to a bigger gap in
the ground truth base rate: 0.57 for WA and 0.38 for BHN
(difference = 0.19). Yet again however, the existing racial
performance gap is exaggerated in the ML predictions with
a PBR of 0.23.

3.1 Connection to fairness metrics in the ML
literature

The four metrics (PBR, FPR, FNR, and accuracy) we eval-
uate throughout the paper are related to some of the widely-
used fairness metrics in ML: statistical parity [14] and equal-
ized odds/opportunity [21]. Consider two population groups,
a minority group (group 0) and a majority group (group 1).
When an MLmodel has the same PBR for group 0 and group
1, it satisfies statistical parity. When the model has the same
FNR and FPR (i.e., FPR0 = FPR1 and FNR0 = FNR1),
it satisfies the equalized odds criterion. A relaxed version
is equalized opportunity, which only requires equal FNRs:
FNR0 = FNR1. These metrics have been heavily analyzed
on datasets from domains such as criminal justice, income
prediction, and healthcare [21, 31, 39, 21, 5, 12, 2], but to
the best of our knowledge, such evaluation has not been
reported on K-12 education data. Our results clearly illus-
trate that significant differences in equalized odds metrics
can also arise when off-the-shelf ML algorithms are applied
on secondary school student data.

3.2 Why do we observe unequal benefit of the
doubt?

How does a ML model systematically underestimate BHN
students’ performance and overestimate WA students’ per-
formance despite not using any race-related features to make
predictions? Well-calibrated classifiers are bound to have
gaps in FPR and FNR between groups when they have dif-
ferent base rates [39]. Are the gaps observed when predicting
student math performance simply caused by the difference
in base rates? To examine this question, we performed ex-
periments of selective subsampling BHN or WA students
to equalize the base rate of the two groups. The result of
subsampling underperforming BHN students to inflate their
base rate is given in the first columns of Table 3. While
the PBRs of both groups increase in this regime, the gaps
in FPR and FNR still remain. We observe the same trend
when we subsample high-performing WA students to lower
the base rate of WA.

Another possible hypothesis is that there are features in the
data that are covariates (i.e., proxies) for students’ race. The
trained ML model can then exploit these features to assign
disparate predictions to different racial groups. To test this
hypothesis, we designed the following experiment. First, we
identify if any features reveal information about students’
race by training an ML model that performs a new binary
classification task of predicting whether a student is WA or
BHN on the HSLS dataset. If it performs better than ran-
dom guessing, we can conclude that other features in the



Selective subsampling BHN Removing implicit race features Removing all parent features

WA BHN Difference WA BHN Difference WA BHN Difference

PBR 0.655 0.549 0.106 (+16.18%) 0.558 0.378 0.180 (+32.26%) 0.524 0.378 0.146 (+27.86%)

FPR 0.402 0.305 0.097 (+24.13%) 0.279 0.205 0.074 (+26.52%) 0.289 0.231 0.058 (+20.07%)

FNR 0.153 0.267 -0.114 (-74.51%) 0.229 0.339 -0.110 (-48.03%) 0.294 0.380 -0.086 (-29.25%)

Accuracy 0.739 0.716 0.023 (+3.11%) 0.749 0.744 0.005 (+0.67%) 0.708 0.712 -0.004 (-0.56%)

Table 3: Random forest results on the high school (HSLS) dataset with selective subsampling and removing a subset of features. To examine

the sources of bias, we performed three experiments: subsampling BHN students in the bottom 50% to raise the base rate of the group,

removing features that are most related to race, and removing all socioeconomic and parent variables. We omit standard errors due to

space constraints. All three methods reduce FPR and FNR gaps, compared to the result in Table 2, but it is far from eradicating the

gaps.

data predict students’ race. In our case, baseline accuracy
of random guessing is 0.66 as a model that predicts everyone
is WA achieves the accuracy of 0.66 as 66% of the popula-
tion is WA. A random forest model we trained achieved the
accuracy of 71% accuracy. We then ranked the most rele-
vant features used in the prediction to infer the most race-
revealing features. The five most predictive features were:
S1LANG1ST (student’s first language), P1MARSTAT (parent 1’s
marital status), X1FAMINCOME (family income), X1PAR2EDU

(parent 2’s highest level of education), and X1PAR2OCC2 (par-
ent 2’s current/most recent occupation). Then, we trained
a new model without using these five features, i.e., with 47
features instead of 52. If the racial gap reduces by removing
the most race-related features, it supports our hypothesis
that implicitly race-related features were being used to as-
sign different predictions to different races. The result of
training a random forest model without the implicit race
features in the second column of Table 3. We observe that
gaps in PBR, FPR, and FNR all decrease substantially. To
further investigate this issue, we also trained models after
removing all socioeconomic variables as well as all parent
survey variables. On average, this narrows the FPR and
FNR gaps further by ∼0.02, but at the sacrifice of accuracy
(a drop of ∼0.04).

These results demonstrate that salient features used in the
prediction task have different distributions for WA and BHN
students and that removing race information from the train-
ing data is not enough to prevent racially discriminatory
performance. However, a careful feature selection can re-
duce performance gaps. This observation is congruent with
reports of ML bias in other applications such as criminal re-
cidivism prediction [24]. One can also employ preprocessing
techniques that reduce race-related information in the data
while maintaining the useful information for prediction [57,
16, 32].

3.3 Implications of FNR and FPR gaps in ed-
ucational opportunities

When predicting student performance, unequal error rates
have real-world consequences. Consider a scenario where we
use a random forest model trained on the HSLS dataset for
9th grade math placement. Students who are predicted to
be in top 50% will be placed in the advanced-level math
class and students who receive bottom 50% prediction will
be placed in the basic math class. The FPR of 0.30 for WA

students (see Table 2) means that 30% of the students who
would not perform well in the 9th grade will be placed in
the advanced class. They are given the benefit of the doubt
and the opportunity to learn more advanced math. On the
other hand, only 18% of the BHN students get the same
benefit of the doubt (FPR=0.18). The FNR of 0.21 in WA
students indicates that 21% of WA students who would in
fact perform well in the future will be placed in the basic
class by the ML algorithm. For BHN students, a startlingly
high 37% will be incorrectly placed in the basic class, their
academic potential ignored by the algorithm.

The downstream effects of such misclassification is dispro-
portionately detrimental to BHN students. Missing the op-
portunity to take foundational math classes such as Algebra
1 can prevent them from taking further advanced classes in
the following years. Indeed, past research shows that middle
school algebra is a strong early predictor of educational out-
comes in high school and college [4, 33, 34, 49]. Moreover,
they are at risk of losing interest in STEM subjects because
of the pessimistic prediction by the algorithm. It was shown
in prior research that low test scores or class placements
to less-advanced classes discourage students from histori-
cally marginalized groups more because they elevate neg-
ative stereotypes [42, 45]. For these reasons, even if it has
similar accuracy for all racial groups, a model that gives
42% more benefit of the doubt to WA students and 78%
more pessimistic underestimation of BHN students’ ability
cannot be considered fair by any means.

4. RACIAL COMPOSITION OF THE TRAIN-
ING SET AND FAIRNESS

In the experiments we presented in the previous section, we
balanced the MSS dataset to have roughly 50% of WA and
50% of BHN students, as the original dataset collected from
private schools had a far fewer number of BHN students
than the national average. For the HSLS dataset, which is
collected from both public and private schools sampled ac-
cording to national demographics, we did not balance racial
groups as the given dataset is already a nationally represen-
tative sample. Was it fair to rebalance the MSS dataset to
have the equal number of data points in each group, and was
it fair to use the HSLS dataset as it is? When dealing with
a dataset made up of different population groups, whether
to balance the dataset and how to balance the dataset are
unavoidable choices that a data scientist has to make in the



Figure 2: Results of changing racial composition of the training set on middle school (MSS) and high school (HSLS) datasets. We plot false

positive rate (FPR), false-negative rate (FNR), and accuracy for each group, White/Asian (WA) and Black/Hispanic/Native American

(BHN), as we change the percentage of BHN students in the training set (p) from 0 to 100%. For the MSS dataset, we ran 30 iterations

of different train/test splits and for the HSLS dataset, we ran 10 iterations. The lines and the shaded regions represent the average and

bootstrap confidence interval. In both datasets, we observe that FPR monotonically decreases and FNR monotonically increases as we

increase p. The black dashed line in the accuracy plot represents the accuracy of random guessing. As we are using more BHN data

points, the accuracy of BHN improves while the accuracy of WA decreases. However, the range of accuracy difference is substantially

smaller than the range of FPR and FNR differences. This suggests that by changing the racial composition of the training set, we are

essentially trading off false positive predictions with false negative predictions while maintaining similar accuracy.

data preprocessing stage in the ML pipeline. Despite its im-
portance, past research has not rigorously investigated the
question of what racial composition of training sets would
produce the most fair model.

To investigate this question, we trained ML models with
different racial mixtures in the training set. We discover that
as we change the racial composition of the training set, from
only WA students to only BHN students, FPR and FNR
change significantly while overall accuracy remains close to
constant. In essence, by changing the training set racial
mixture, the model is trading off false positive predictions
and false negative predictions.

In the experiments, we varied the proportion of BHN stu-

dents in a training set, p = (#BHN)
(#WA) +(#BHN)

, from 0 to 1

in the interval of 0.1. For all p, we ensure that the entire
training set size (i.e., number of all data points in the train-
ing set) is the same. To achieve different p, we subsample
from each group and fit a random forest classifier for each

subsampled dataset. The results are summarized in Fig. 2.

The results we observe are striking. Focusing solely on ac-
curacy may lead to the incorrect conclusion that the effect
of different racial compositions of a training set is minute:
the accuracy for each group does not vary more than 0.05
as we change p from 0 to 1 (i.e., 0% to 100% BHN). How-
ever, FPR and FNR metrics change drastically with differ-
ent racial compositions of the training set. In both the MSS
and HSLS results, FPR monotonically decreases and FNR
monotonically increases for both BHN and WA students as
we increase p from 0% BHN to 100% BHN. The range of
FPR and FNR changes is significant. In the MSS results,
FPR moves from 0.45 to 0.25 and FNR moves from 0.2 to
0.4. In the HSLS results, the range of FPR difference is
from ∼0.4 to 0.1 and FNR moves from 0.2 to 0.5. The gaps
in FPR and FNR remain throughout different values of p.
However, in the MSS dataset results, the gaps in both FPR
and FNR tend to reduce as p gets closer to 0. Similarly, in
the HSLS experiments, the FPR/FNR gaps reduce slightly



Figure 3: ROC curve analysis of training with different racial mix-

tures on the HSLS dataset. We plot receiver operating character-

istic (ROC) curves for each different mixture (i.e., each different

p). Lighter colors represent smaller p (i.e., fewer BHN students

in the training set) and darker colors represent bigger p. Eleven

different ROC curves almost overlap and are indistinguishable

from each other. The circle markers denote the operating point

of the trained model with different values of p. Notice that as p

increases, the markers move down on the curve and have smaller

FPR and TPR values. This implies that training with different

racial mixtures mimics the behavior of choosing different decision

thresholds of a fixed classifier.

around p = 0. Finally, even though the difference in accu-
racy is small, we observe that as we increase p, i.e., as we
use more BHN students in the training set, the accuracy for
BHN increases and the accuracy for WA decreases.

4.1 ROC curve analysis
There is a clear trade-off between FPR and FNR as we
change the racial mixture of the training set. This behav-
ior can be mapped to the receiver operating characteristic
(ROC) curve of the classifiers used to predict student math
performance. For binary classification, the ML models we
considered produce a score S (0 ≤ S ≤ 1) for each input
sample. Predictions are then made by thresholding the score
as follows:

Prediction =

{
Positive, if S ≥ 0.5,

Negative, if S < 0.5.

After training, a ML model can be viewed as a function that
computes a score S from the input data. In most off-the shelf
models, the default score threshold for predicting positive
outcomes is 0.5, but this threshold can be adjusted. Increas-
ing the threshold above 0.5 leads to fewer data points receiv-
ing positive predictions and, equivalently, a lower FPR and a
higher FNR. When predicting student performance, this cor-
responds to fewer students being flagged as high performers
and less benefit of the doubt overall. Conversely, lowering
the threshold below 0.5 results in a lower FNR and a higher
FPR. ROC curves show how true positive rate (TPR) and
FPR change as we vary the threshold for a trained classifier
(i.e., for a fixed function that computes S from the input),
where TPR is defined as:

TPR =
True Positive

True Positive + False Negative
= 1− FNR.

Notice that changing a score threshold for a trained classi-
fier trades off FPR and FNR, similar to what we observed

when changing the racial mixture of the training set. Is
changing the racial composition of the training set equiva-
lent to changing the score threshold? The goal of following
analysis is to understand if models trained on different racial
mixtures produce different FPR and FNR because they have
different ROC curves or if they approximately learn the same
scoring function (i.e., have the same ROC curves) but use
different thresholds (i.e., correspond to different points on
the ROC curve).

We plot the ROC curves for the trained models for each p in
Fig. 3. Recall that p is the proportion of BHN data points
in the training set. The lighter color lines and markers in
the plot represent smaller p. We observe that the eleven
ROC curves for different values of p mostly overlap with
insignificant differences. The markers in the plot represent
the operating point for the trained classifier for each p. As
we increase p, these points move down on the curve. This is
essentially equivalent to increasing the decision threshold of
a fixed classifier to be more conservative in making positive
predictions. In other words, the classifier decreases FPR and
increases FNR.

We now explain this behavior with the base rate change in-
duced by different racial mixture. Base rate (BR) is defined
as:

BR =
True Positive + False Negative

All
.

As we increase p to include more BHN students, the overall
BR of the training set becomes smaller. The classifier that
maximizes accuracy on the ROC curve corresponds to the
point that has the tangent of 1−BR

BR
. Since BR decreases

with increasing p, the 1−BR
BR

becomes larger. Hence, the
operating point moves down on the ROC curve where the
slope is steeper.

4.2 Fair racial mixture for training
How should one choose the racial mixture of training sets in
order to produce a fair model? Ideally, a ML model should
achieve similar performance across metrics (e.g., accuracy,
PBR, FPR, and FNR) for different student racial groups.
However, when the data from two groups do not follow the
same statistical distribution, a model cannot achieve equal-
ity in all metrics [7, 29]. It is thus important to identify
the impact of prioritizing different metrics when predicting
student performance.

If we consider achieving equal accuracy as a fairness goal,
the results in Fig. 2 suggest that balancing the dataset to
have an equal number of BHN and WA students would be
the right solution. However, our results echo that accuracy
should not be the sole metric of focus as FPR and FNR gaps
show severe discriminatory effects. If we choose a fairness
criterion to be equal FPR and FNR, Fig. 2 indicates that
simply changing the racial mixture of the training set cannot
achieve this. If we relax the condition and choose a training
set that has the smallest gap in FPR and FNR, the best p
is 0.0, meaning the training set is 100% WA. This can bene-
fit BHN students as it not only has the smallest FPR/FNR
gaps, but also has the smallest FNR for all groups. Reduc-
ing false negative predictions can be especially beneficial for
minority students, who are at greater risk of losing interest



in STEM subjects by receiving negative predictions. Con-
trary to the most intuitive choices of fair training set—one
that contains an equal number of WA and BHN students or
one that follows the national demographics—we show that
using homogeneous samples of WA students can produce the
fairest model in terms of the FPR and FNR gap.

5. FAIR INTERVENTIONS ON EDUCATION
DATASETS

Figure 4: Comparison of different fairness interventions applied to

the HSLS dataset. We plot accuracy over FPR and FNR differ-

ences for the balancing approach we introduced in Section 4 and

five different existing fair intervention methods. Standard errors

for both x and y axis are obtained from 10 runs of each method

with different train-test splits.

In Section 3, we saw that WA students receive disproportion-
ately more benefit of the doubt and BHN students receive
more pessimistic predictions when off-the-shelf ML models
are used to predict student math performance. We also re-
ported that neither artificially equating the base rates be-
tween the groups by subsampling nor removing features that
are most related to race can eradicate the racial gaps com-
pletely. In Section 4, we showed that different choices of
data balancing can be a surprisingly effective for reducing
FPR and FNR gaps with small loss in accuracy. In this
section, we apply state-of-the-art fair learning methods and
study how effective they are in mitigating bias in student
performance prediction.

We compare five different methods: decoupling [15], equal-
ized odds post-processing (EqOdds) [21], reject-option [27],
reduction [2], and fair score transformer (FST) [52]. De-
coupling [15, 50] is the simple method of training a sepa-
rate model for each group, and can be an easy and effective
method a data scientist can adopt if it is legal and ehtical
to do so. The other four methods are designed to specifi-

cally reduce FPR and FNR gaps. However, there is a cru-
cial distinction. EqOdds and reject-Option methods require
sensitive attributes (i.e., student race information) at de-
ployment. On the other hand, reduction and FST methods,
as implemented here, only require sensitive attributes for
training a model but not for making predictions.

The results of applying the five methods are illustrated in
Figure 4. We first notice that EqOdds achieve FPR and
FNR gaps closest to 0, albeit losing accuracy considerably.
FST and reduction methods achieve the the best accuracy
in the high FPR and FNR region. Evaluations on other
datasets shown in the previous literature [2, 52] also demon-
strated that FST and the reductions approaches often show
the most competitive performance. However, as we exclude
sensitive attributes at test time, these methods cannot achieve
close-to-perfect fairness compared to methods that utilize
sensitive attributes. The reject-option method exhibits com-
petitive accuracy and it also extends to the region where
FPR and FNR differences are very small by using the sen-
sitive attribute. The balancing approach we introduced in
the previous section (blue line) shows a trade-off curve com-
parable to the reject-option method even though it does not
utilize sensitive attributes during training or testing time.

6. DISCUSSION
Our analyses on the middle school and high school datasets
show that even when an algorithm gives significantly more
benefit of the doubt to the privileged groups of students com-
pared to historically marginalized groups, accuracy for the
two groups can be almost equal. This result serves as a cau-
tionary tale on the danger of blindly following the standard
practice of choosing a model that achieves high accuracy.
To build a fair algorithm, it is necessary to also examine
FPR and FNR metrics. We frame these metrics as benefit
of the doubt and pessimistic underestimation to make them
relevant to a potential application scenario and understand-
able to educators and policymakers. When a data scientist
observes unequal benefit of the doubt between racial groups
in ML models, they can consider using intervention meth-
ods that reduce the FPR and FNR gaps. As mentioned
earlier, equal FPR and FNR is referred to as equalized odds
in the fair ML literature [21]. This notion of group fairness
has been studied extensively and various methods have been
proposed to reduce FPR/FNR disparities, ranging from pre-
processing techniques [31], postprocessing techniques [39,
21], to adding FPR/FNR equality as an objective during
the training process [5, 12, 2].

Our experiments of altering the demographic composition in
training sets add a new dimension to fairness-ensuring inter-
ventions in ML. By using a training set with different ratios
of population groups, we arrive at different models which
can improve FPR/FNR disparities with little to no sacrifice
in accuracy. By doing an analysis similar to Fig. 2, a data
scientist can select a training set that improves the benefit of
the doubt given to all groups. The main advantages of this
method is that it does not require deploying different models
for different groups (or using race as an input feature) nor
any change to the data beyond varying the composition of
the training set. This intervention can also easily be paired
with other existing fair learning algorithms later in the ML
pipeline. Theoretical analysis of this mechanism to support



our empirical study will be an interesting future direction.
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