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ABSTRACT
Educational technologies nowadays increasingly use data and
Machine Learning (ML) models. This gives the students,
instructors, and administrators support and insights for the
optimum policy. However, it is well acknowledged that ML
models are subject to bias, which raises concerns about the
fairness, bias, and discrimination of using these automated
ML algorithms in education and its unintended and unfore-
seen negative consequences. The contribution of bias during
the decision-making comes from datasets used for training
ML models and the model architecture. This paper presents
a preliminary investigation of the fairness of transformer
neural networks on the two tabular datasets: Law School
and Student-Mathematics. In contrast to classical ML mod-
els, the transformer-based models transform these tabular
datasets into a richer representation while solving the clas-
sification task. We use different fairness metrics for evalua-
tion and check the trade-off between fairness and accuracy
of the transformer-based models over the tabular datasets.
Empirically, our approach shows impressive results regard-
ing the trade-off between fairness and performance on the
Law School dataset.
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1. INTRODUCTION
Automated decision-making with ML models in education
is increasingly used to aid and support teachers, educa-
tors, and other stakeholders for optimal policy formulation.
Though this method holds immense potential to improve
prediction accuracy, the outcomes of the ML models show
unfair results to some groups (e.g., an underrepresented mi-
nority group) of society. For example, the ML models show
unfair approval for student loans for African students or
predict lower bar exam success of students of low socio-
economic group [5].

In general, the notion of unfairness in ML is broadly catego-
rized as follows [20], (i) Disparate treatment: where the ML
model classifies differently (unfairly) people with the same
values of non-sensitive features but different values of sen-
sitive features, (ii) Disparate impact: where the ML model
classifies that benefits (or hurts) people who are sharing the
value of a sensitive feature vector more frequently than the
other group, (iii) Disparate mistreatment: where the ML
model achieves different classification accuracy for groups of
people sharing different values of a sensitive feature.
Our paper mainly investigated the fairness of classification
using transformer models on tabular data in the educational
domain. We used tabular non-textual data to train the
transformer networks and thus verify their ability to make
fair predictions in the classification tasks in two scenarios:
first, training transformer networks without any bias mit-
igation method, and second, considering a bias mitigation
method (Section 3) while training transformer networks.
The representation of non-textual data in a rich representa-
tion via the transformer model is one of the main strengths
of the transformer models. It follows the distributional hy-
pothesis: a word is characterized by the company it keeps.

In our work, we showed that there exists a transformer
model, namely the SAINT model, which achieves perfect
group fairness without requiring any explicit debiasing method.
In addition, one of the transformer models, the Tab model
(with fairness constraint), improves fairness for the pro-
tected group at a negligible cost in terms of accuracy com-
pared to the other models on the Law School dataset. Fur-
thermore, we indicated a case using the Student-Mathematics
dataset, where we do not recommend using the transformer
models to mitigate bias in the final predictions. Finally, we
demonstrated the possibility of empirically achieving a slight
trade-off between performance and fairness using transformer
models.

To the best of our knowledge, our work is the first study
that explores the fairness ability of transformer-based mod-
els on tabular data in educational and other domains—in
addition to considering the use of fairness constraint to train
transformer-based models on tabular data in particular.

2. RELATED WORK
A comprehensive studies of algorithmic fairness in education
is reported in [13]. They have investigated how discrimina-
tion emerges in automated systems and how it can be mit-
igated through studying and calibrating: the measurement



of input data, model learning, and output presentation. A
comparative study of different fairness algorithms on multi-
ple datasets are reported [6]).
The Law School Admission Council (LSAC) National Longi-
tudinal Study reported discrimination against Africans (and
other minorities) examinees during the bar passage exami-
nations [19]. Recent approaches of using transformer-based
models are showcased in [8, 11, 17] and in Section 4 we
provide details of those transformer-based models. How-
ever, in contrast to the previous works [8, 11, 17] which
only considered the performance of transformer-based mod-
els, we validate the fairness capability and performance of
transformer-based models simultaneously. A flurry of in-
teresting and insightful research on fairness constraints are
investigated recently by various research groups [20, 15, 1].
Several authors addressed the problem of trade-off between
fairness and accuracy [16, 3] by explaining why a trade-off
exists on a given biased dataset and demonstrating the pos-
sibility of empirically improving fairness without sacrificing
accuracy.

3. FAIR CLASSIFICATION THEORY
Fairness of machine learning examines the disparate treat-
ment, disparate impact, or disparate mistreatment of dif-
ferent groups in a population, which are devised based on
sensitive attributes, denoted by z, such as race, etc. Groups
are divided into privileged groups (favorable treatment) and
unprivileged groups (unfavorable treatment). Without loss
of generality, let z = 0 be the unprivileged group and z = 1
be the privileged group. Privileged population groups would
be more likely to receive favorable treatment than unprivi-
leged population groups by a biased model.
In general, the binary classification task can be formulated
as finding the optimum mapping function T using input fea-
tures x ∈ Rd and class labels y ∈ (0, 1). For example, the
label y = 1 could represents the application loan is getting
accepted and y = 0 otherwise. This decision boundary-
based classifier T predicts a label y, by minimizing the cross-
entropy loss function over a training set:

arg min
w

LwW (1)

L(T (x) = ŷ, y) = −(y log(ŷ) + (1 − y) log(1 − ŷ)) (2)

where ŷ is the predicted label and w is the set of model
weights. However, the classifier can be trained fairly using
additional constraint for fairness guarantees of unprivileged
group [1, 20]. The fairness constrained optimization problem
can be expressed as the following:

arg min
w

Lw

subject to P (.|z = 0) = P (.|z = 1)
(3)

where the constraint in (3) can be formulated as a condition
of no disparate treatment (4), no disparate impact (5) or no
disparate mistreatment (6, 7, 8) as shown below.

P (ŷ|x, z) = P (ŷ|x) (4)

P (ŷ = 1|z = 0) = P (ŷ|z = 1) (5)

P (ŷ ̸= y|z = 0) = P (ŷ ̸= y|z = 1) (6)

P (ŷ ̸= y|y = −1, z = 0) = P (ŷ ̸= y|y = −1, z = 1) (7)

P (ŷ ̸= y|y = 1, z = 0) = P (ŷ ̸= y|y = 1, z = 1) (8)

We consider only the condition of no disparate treatment
(4) as the fairness constraint in our experiments. However,
finding an optimum fair classifier defined by the constrained
optimization problem (3) is non-trivial. The desired fair
classifier (satisfying the constraints) may be of a non-convex
boundary-based type; thus, finding the optimum weights w
in some cases is challenging.

4. PROPOSED MODELS
This section highlights the models that we used in our work.
Most of the transformer-based models are adaptations of the
transformer architecture [18], and we examine them for fair
classification in the tabular datasets in the educational do-
main.
The first transformer-based model that is explicitly designed
for tabular data is Tab-Transformer [11]. For the sake of
brevity, we refer to the Tab-Transformer model as Tab model
in our paper. The Tab model uses attention mechanism to
embed only categorical features in the tabular data. A very
similar model to the Tab model is FT-Transformer (Fea-
ture Tokenizer + Transformer) model [8], or FT model, for
short. The FT model is also designed specifically for tab-
ular data. However, the FT model transforms all features
(categorical and numerical) to embeddings where the con-
tinuous features are projected into a d−dimensional space
before passing them through the transformer encoder.
Our paper shows that the most critical transformer-based
model regarding fairness in the tabular dataset is the SAINT
model, Self-Attention and Intersample Attention Transformer
[17]. The architecture of the SAINT model itself plays the
role of a regularizer for achieving fairness. Each block of
SAINT model consists of two attention blocks: self-attention
transformer block [18] and intersample attention (a type of
row attention) transformer block. The intersample attention
block of SAINT model computes attention across samples.
In this approach, the features of a given data point interact
with each other, then data points interact with each other
using entire rows. Consequently, the SAINT model implic-
itly satisfies the condition (4) since it provides a better con-
textual representation than the other models for the data
points and thus, does not need to add a fairness constraint
to the objective function in some cases.
The last transformer-based model we used is Perceiver [12].
Perceiver model is designed to be architecture agnostic of
the nature of the input data. It handles arbitrary config-
urations of different modalities (audio, images, and text).
In our experiment we check the performance and fairness
of Perceiver model in tabular data modality. In addition to
the previous transformer-based models, we used one of the
classical ML models, Logistic Regression (LR) model. LR is
one of the common statistical analysis methods to predict a
binary outcome and used in different works when studying
fairness of ML.

5. DATASETS AND FAIRNESS METRICS
In this section, we describe the datasets used in our ex-
periments and define the fairness metrics for assessing the
models’ fairness.

5.1 Datasets
We used two tabular datasets in our experiments: Law School
(LSAC) and Student-Mathematics datasets. For both datasets,



we consider using the same features and processing1 that are
used to conduct the experiments in the survey [14].
The Law School dataset was developed by a Law School Ad-
mission Council (LSAC) survey across 163 law schools in the
United States in 1991 [19]. The dataset is investigated in a
variety of studies and is currently hosted in the database of
Project SEAPHE2. After cleaning and processing the law
school data, we got 20,798 samples of students. We used
12 attributes (3 categorical, 3 binary and 6 numerical at-
tributes) for Law School dataset in experiments. The model
is used to predict whether or not an examiner will pass the
bar exam. We label ’Non-white’ to be the minority and un-
privileged group in our experiments, 16% of the Law School
dataset.
In the Student-Mathematics dataset3, the task is to pre-
dict the performance of secondary school students in math-
ematics subject [2]. The dataset contains 395 samples of
students with 33 features (4 categorical, 13 binary and 16
numerical attributes). The female students in the Student-
Mathematics dataset are the majority group, with about
52.7% of the dataset.

5.2 Fairness Metrics
Our paper focused on the disparate treatment of population
groups (privileged and unprivileged), so we used different
group fairness metrics to determine the bias in the model’s
final predictions.
We investigated three group fairness metrics in total: Ab-
solute Between-ROC Area (ABROC) [7], Equal Opportu-
nity Difference (EOD) [9] and Statistical Parity Difference
(SPD) [4]. We interpret that the more unfair a model, the
greater the difference in fairness metric values of each sub-
group.
The ABROCA statistic is based on the Receiver Operat-
ing Characteristics (ROC) curve, and measures the absolute
value of the area between the baseline group ROC curve
ROCb and those of one or more comparison groups ROCc.
Whereas EOD measures the difference between True Pos-
itive Rates (TPR) for unprivileged and privileged groups.
Finally, SPD measures the difference between the probabil-
ity of unprivileged group gets favorable prediction and the
probability of privileged group gets favorable prediction.

6. EXPERIMENTS AND RESULTS
This section presents the results of our experiments and il-
lustrates the trade-offs between fairness and performance.
We randomly split the Law school and Student-Mathematics
datasets into training and test sets for our experiments.
Each test set was chosen to have 30% of the samples and
the training sets to contain the remaining samples from each
dataset.
Table 1 shows that all the transformer-based models (with-

out fairness constraint) have comparable performance on the
Law School dataset. Nonetheless, the Tab model (with-
out fairness constraint) has shown marginally better per-
formance scores on the Law School dataset than the other
transformer models, with accuracy of 0.90016 and F1 score

1https://github.com/tailequy/fairness-dataset/
tree/main/experiments
2http://www.seaphe.org/databases.php
3https://archive.ics.uci.edu/ml/datasets/student+
performance

Dataset: Law School. Protected attribute: race.

Model F1 Accuracy SPD EOD

LR 0.94984 0.90721 0.189538 0.082670
FT 0.94504 0.89839 -0.215906 -0.124452
Tab 0.94664 0.90016 -0.112048 -0.049809
Perceiver 0.94590 0.89919 -0.151387 -0.081128
SAINT 0.94299 0.89214 0 0

Dataset: Student-Mathematics. Protected attribute: sex.

Model F1 Accuracy SPD EOD
LR 0.91111 0.93277 0.153193 -0.005847
SAINT 0.76041 0.61344 0 0

Table 1: Results of each model without applying any fairness
constraint.

Model F1 Accuracy SPD EOD

LR 0.94643 0.89983 -0.100764 -0.043942
FT 0.94305 0.89230 0.001328 0.000617
Tab 0.94371 0.89342 0 0
Perceiver 0.94237 0.89102 0 0
SAINT 0.94012 0.88701 0 0

Table 2: Results of each model with fairness constraints on
Law School. Protected attribute: race.

of 0.94664. Moreover, Table 1 indicates that the LR model
has better performance than the Tab model by a very small
margin, with an accuracy improvement by +0.00705 and
F1-score improvement by +0.0032. Furthermore, Table 1
and Figure 1 show that the SAINT model outperforms the
other models in terms of fairness without requiring any ex-
plicit debiasing method. This ensures that the candidates
are treated equally based on different races (protected at-
tribute in the Law School dataset) when predicting whether
or not the candidate will pass the bar exam. In short, the
SAINT model emerges as an ideal candidate for correctly
identifying successful students at equal rates for different
race subgroups.
However, transformer-based models are nonlinear with a
large number of model parameters. This requires a large
enough dataset to train [10] for achieving a good perfor-
mance. Thus, the number of samples of Student-Mathematics
dataset (only 395 samples) is not enough for training these
transformer neural networks. As a result, the LR model
outperforms the SAINT model on the Student-Mathematics
dataset, with an accuracy of 0.93277 and F1-score of 0.91111.
Nevertheless, same as in the Law School dataset, the SAINT
model outperforms the LR model on the Student-Mathematics
dataset based on the fairness metrics (SPD, EOD) without
requiring any explicit debiasing technique.
Using the mentioned bias mitigation method in Section 3,

Table 2 and Figure 1 show that the transformer-based mod-
els (with fairness constraint) successfully limit the bias in
the final predictions on the Law School dataset at a min-
imal cost in terms of performance. Intriguingly, the Tab
model (with fairness constraint) shows better performance
and fairness than the other transformer models, with an ac-
curacy of 0.89342, F1-score of 0.94371, and perfect group
fairness. Furthermore, although the SAINT model showed
its usefulness in achieving perfect group fairness without re-

https://github.com/tailequy/fairness-dataset/tree/main/experiments
https://github.com/tailequy/fairness-dataset/tree/main/experiments
http://www.seaphe.org/databases.php
https://archive.ics.uci.edu/ml/datasets/student+performance
https://archive.ics.uci.edu/ml/datasets/student+performance
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(a) LR with
fairness constraint
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(b) Tab-Transformer without
fairness constraint

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

it
iv

e 
Ra

te

ABROCA = 0.1502
White
Non-White

(c) FT-Transformer without
fairness constraint
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(d) SAINT without
fairness constraint
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(e) Perceiver without
fairness constraint
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(f) LR with
fairness constraint
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(g) Tab-Transformer with
fairness constraint
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(h) FT-Transformer with
fairness constraint
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(i) SAINT with fairness
constraint
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(j) Perceiver with fairness
constraint

Figure 1: ABROCA of each model on Law School Data. Figures (a, b, c, d, e) show ABROCA of each model without applying
fairness constraints. Figures (f, g, h, i, j) show ABROCA of each model when applying fairness constraints.

quiring any explicit debiasing method, the Tab model (with
fairness constraint) outperformed the SAINT model (with-
out fairness constraint) in terms of fairness and performance
simultaneously, with an accuracy improvement by +0.00128
and F1-score improvement by +0.00072.
Additionally, the LR model showed two drawbacks: (i) it
hardly shows a noticeable better performance than the other
transformer models on the Law School dataset, and (ii) Fig-
ure 1 indicates that the LR model tends to fail to converge to
a complete fair solution, with ABROCA of 0.171 for the LR
model (without fairness constraint) and ABROCA of 0.0889
for the LR model (with fairness constraint).
In general, previous results in Table 1 and Table 2 show
that when we use a large enough dataset, such as the Law
School dataset, there is a slight trade-off between the per-
formance and fairness using the transformer models (with
fairness constraint). Additionally, Table 1 indicates that
the SAINT model approximates the ideal distribution of the
given dataset, which has a negligible accuracy-fairness trade-
off.

7. CONCLUSION
Improving fairness while training the model and preserving
its sound performance is challenging in ML. The prior works
have focused on enhancing fairness in the final predictions
using different bias mitigation techniques in classical ML
models. Still, as we show, transformer models have some
advantages when we use them to study fairness over the
tabular dataset. In particular, we showed that the SAINT
model achieves perfect group fairness without requiring any
explicit debiasing method. Additionally, we showed that the
Tab model (with fairness constraint) improves fairness for
the protected group in the Law School dataset at a negligi-
ble cost in terms of accuracy compared to the other models.
Our critical insight is that when trying to improve the fair-

ness in final results using transformer models, it is valuable
to check if the tabular dataset is large enough and compat-
ible with the number of the parameters in the transformer
model.
Consequently, we believe that this insight and use of trans-
former models for fairness over tabular datasets provide a
foundation for pursuing the fairness of artificial intelligence
in educational and other domains.
For future work, we will comprehensively study the empirical
performance of the transformer models for fair classification
in different tabular datasets. In addition, we will employ
the ideas of transfer learning and self-supervised learning to
solve the problem of training the transformer-based models
on a small dataset.
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